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Direct numerical simulations of passive scalars, with Prandtl numbers Pr = 3, 5, and
7, advected by turbulence at three low Reynolds numbers were performed. The energy
spectra are self-similar under the Kolmogorov scaling and exhibit behaviour consistent
with many other investigations: a short inertial range for the highest Reynolds number
and the universal exponential form of the spectrum for all Reynolds numbers in the
dissipation range. In all cases the passive scalar spectra collapse to a single self-
similar curve under the Batchelor scaling and exhibit the k−1 range followed by an
exponential fall-off. We attribute the applicability of the Batchelor scaling to our
low-Reynolds-number flows to the universality of the energy dissipation spectra. The
Batchelor range is observed for wavenumbers in general agreement with experimental
observations but smaller than predicted by the classical estimates. The discrepancy
is caused by the fact that the velocity scales responsible for the generation of the
Batchelor range are in the vicinity of the wavenumber of the maximum energy
dissipation, which is one order of magnitude less than the Kolmogorov wavenumber
used in the classical theory. Two different functional forms of passive scalar spectra
proposed by Batchelor and Kraichnan were fitted to the simulation results and it was
found that the Kraichnan model agrees very well with the data while the Batchelor
formula displays systematic deviations from the data. Implications of these differences
for the experimental procedures to measure the energy and passive scalar dissipation
rates in oceanographic flows are discussed.

1. Introduction
The spectral behaviour of kinetic energy spectra in homogeneous isotropic turbu-

lence is fairly well established through results from experiments, theoretical studies,
and numerical simulations. These studies have been reviewed in several monographs
(Monin & Yaglom 1971; Lesieur 1990). For flows at high Reynolds numbers the
most important part of the spectrum is the k−5/3 inertial subrange, which according
to the Kolmogorov (1941) theory terminates below the Kolmogorov or dissipation
wavenumber

kK = (ε/ν3)1/4 = 1/ηK, (1)

where ε is the kinetic energy dissipation rate, ν is the kinematic viscosity, and ηK is the
Kolmogorov length scale. Experimental results indicate that the inertial range ends at
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wavenumbers lower than or around k ≈ (0.1−0.2)kK . Many theoretical and numerical
results (Kraichnan 1959; Kerr 1990; Domaradzki 1992; Chen et al. 1993; Martinez
et al. 1996) support the following form for the dissipation range for wavenumbers
k > 0.2kK:

E(k) ∼ (k/kK)α exp (−ak/kK). (2)

The exponential is well established and has been confirmed by the experiments of
Sreenivasan (1985) but the algebraic prefactor is uncertain though several investi-
gations suggest α ≈ −2 in the range 0.2 < k/kK < 4. While the inertial subrange
exists only for sufficiently high-Reynolds-number turbulence, generally inaccessible to
numerical simulations, the dissipation-range form (2) appears to be universally valid
for all Reynolds numbers and can be easily simulated numerically. The universality in
particular implies that those features of turbulence that are determined by scales from
the vicinity of kK can be investigated through direct numerical simulations (DNS)
irrespective of Reynolds number. This observation is used later in our work.

In many physical situations one encounters passive scalars advected by turbulent ve-
locity fields like temperature and pollutants in air and water. Following Kolmogorov’s
local isotropy hypothesis Obukhov (1949) and Corrsin (1951) predicted that scalar
variance spectra at high Reynolds numbers will also have a k−5/3 inertial subrange.
The behaviour of the variance spectra for wavenumbers beyond the Corrsin–Obukhov
range depends on the Prandtl (or Schmidt) number Pr = ν/κ, where κ is the scalar
diffusivity. For Pr < 1 Batchelor, Howells & Townsend (1959) predict the following
form for the spectrum of the variance of a scalar advected by the velocity scales from
the inertial subrange:

Eθ(k) ∼ χκ−3ε2/3k−17/3, (3)

where χ is the scalar variance dissipation rate; the formula is valid for wavenumbers
k greater than the Obukhov–Corrsin wavenumber

kOC = (ε/κ3)1/4 = Pr3/4kK. (4)

Following Batchelor et al.’s (1959) assumptions Chasnov, Canuto & Rogallo (1988)
performed numerical simulations of a passive scalar advected by a frozen velocity field
with the inertial-range spectrum as well as by a velocity field obtained in large-eddy
simulations. In both cases the spectral form (3) was observed.

In oceanographic applications temperature and salinity are important scalars,
and both have Pr > 1. The case of Pr � 1 was investigated theoretically by
Batchelor (1959) who derived the following form of the scalar spectrum in the
viscous–convective range:

Eθ(k) = −(χ/γ)k−1 exp(κk2/γ), (5)

where γ is the average value of the least principal rate of strain (a negative quantity)
acting on scales k > kK . The derivation is based on a physical picture of the scalar
field at scales k � kK being deformed by an essentially uniform gradient of the
velocity at much larger scales k ≈ kK . For k less than the Batchelor wavenumber

kB = (ε/νκ2)1/4 = Pr1/2kK = 1/ηB, (6)

the exponential factor in (5) is approximately equal to unity and the algebraic prefactor
k−1 dominates such that the so-called Batchelor spectrum becomes

Eθ(k) = −(χ/γ)k−1. (7)

The final form of the Batchelor spectrum is determined by specifying the strain rate
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γ. For flows at high Reynolds numbers it is assumed that a good estimate is given by
the rate of strain of Kolmogorov eddies

γ = −(1/q)(ε/ν)1/2, (8)

where q is a universal constant. Using available experimental data Batchelor (1959)
estimated q ≈ 2. Gibson (1968b) provides a range of values

√
3 < q < 2

√
3 deduced

from the incompressibility and kinematics of fluid elements. Oceanic measurements
provided values of q = 3.9± 1.5 (Grant et al. 1968) and q = 3.7± 1.5 (Oakey 1982).

Each of the previous spectral predictions for scalar spectra results from a separate
set of physical assumptions, making the predictions independent of each other. Gibson
(1968a, b) proposed a unified theory of passive scalars advected by turbulence valid
for all values of the Prandtl number. The theory is based on the physical mechanism
of generation of maxima and minima of the scalar concentration by the local rates
of strain. This mechanism is distinctly different from the mechanism invoked by
Batchelor for Pr � 1. While for Pr > 1 Gibson’s prediction for the spectra of the
scalar is the same as Batchelor’s prediction (5), for Pr � 1 Gibson’s theory implies
the intermediate k−3 range for kOC < k < kB before the k−17/3 range develops for
k > kB . The evidence in support of Gibson’s theory is discussed by Clay (1973),
and Kerr (1990). In the context of our work Gibson’s analysis has two appealing
features. First, it suggests that the Batchelor k−1 range may appear even if the Prandtl
number is not much greater than unity (i.e. the condition Pr > 1 replaces Batchelor’s
Pr � 1). Second, it implies a universal scaling independent of the Prandtl number
for scalar spectra in the scalar dissipation range. This so-called Batchelor scaling is
obtained by normalizing wavenumbers by the Batchelor length scale ηB and spectra
by χ(ν/ε)1/2ηB . Under this scaling expression (5) is given by a self-similar form

Eθ(kηB)

χ(ν/ε)1/2ηB
= q(kηB)−1 exp(−q(kηB)2). (9)

Kraichnan (1968) considered the effects of fluctuations of the rates of strain in

space and time in Batchelor’s analysis and showed that while k−1 behaviour survives,
the Gaussian factor in (5) is not universal and is replaced by a simple exponential.
He also obtained the same result using Lagrangian-history-direct-interaction (LDHI)
closure theory. Kraichnan’s equation for a scalar spectrum was solved in a closed
form by Mjølsness (1975) giving the following result:

Eθ(k) = 5(χ/Λ)k−1(1 + ξ) exp(−ξ), (10)

where ξ = (30κ/Λ)1/2k, and the constant Λ can be in principle calculated from the
theory. By comparing functional expressions (10) and (7) in the limit k → 0 we get
Λ = (5/q)(ε/ν)1/2. Using the Batchelor scaling formula (10) becomes

Eθ(kηB)

χ(ν/ε)1/2ηB
= q(kηB)−1(1 + (6q)1/2kηB) exp(−(6q)1/2kηB). (11)

Similar expressions, containing the k−1 range and the exponential form, are also
predicted by other analytical theories of turbulence (Newman & Herring 1979;
Herring & Kerr 1982; Qian 1995). The analytical theories also make predictions
about the universal constant q in (11). Kraichnan (1968) estimates q < 0.9 using
LHDIA, Newman & Herring (1979) give q = 1.68 using the test field model and
Qian (1995) gives q = 2

√
5. Only the last value is consistent with the experimental

evidence.



114 D. Bogucki, J. A. Domaradzki and P. K. Yeung

In summary the classical picture of the scalar spectrum in high-Reynolds-number
flow and Pr � 1 as uniformly presented in turbulence literature (Tennekes & Lumley
1972; Monin & Yaglom 1971; Lesieur 1990) is the inertial k−5/3 behaviour for
k � kK , the Batchelor k−1 behaviour for kK < k < kB , and exponential decay for
k > kB .

Despite the wealth of theoretical results in favour of this picture the experimen-
tal evidence is ambiguous, ranging from supporting to rejecting in part or entirely
the spectral forms, in particular the k−1 Batchelor range, arrived at by theoretical
considerations. Gibson & Schwarz (1963) observed the Batchelor spectrum for tem-
perature and salinity in laboratory measurements in water and the approximate k−1

behaviour for the temperature spectrum is also suggested by oceanographic field
measurements of Grant et al. (1968), Clay (1973), and Oakey (1982). However, later
measurements of Gargett (1985) contradicted the universality of the Batchelor spec-
trum and cast doubt on earlier experimental results. The oceanographic implications
of this discrepancy are summarized in the review of Gregg (1987). More recently
Miller & Dimotakis (1995) reported results of laboratory measurements of scalar
spectra for high Schmidt number (' 1.9× 103) in a turbulent jet which do not show
any evidence of the k−1 spectral behaviour. Note that according to the Batchelor
theory the large value of Schmidt number (� 1) in this experiment should allow for
an easy detection of the k−1 range. Earlier Dimotakis & Miller (1991) showed that
in the limit of infinite Schmidt numbers the scalar variance must remain bounded
while it is well known that it diverges if the k−1 spectrum is assumed. The k−1 range
is also absent in the high-Schmidt-number two-dimensional mixing experiments of
Williams, Marteau & Gollub (1997). Thus some of the above results contradict the
classical picture of high-Prandtl-number mixing but no single, satisfactory explana-
tion of the observed departures from the k−1 behaviour is currently available. Several
explanations have been proposed. Batchelor (1959) recognized the scalar variance
divergence for high Schmidt numbers and suggested that the k−1 range may not
be observed if there is not a sufficient flux of the scalar variance from the large
scales to the small scales. Gibson (1991) attributes the departures from the Batchelor
predictions in experiments to turbulence intermittency and fossilization. Williams et
al. (1997) observe that the passive scalar may be trapped inside long-lived coherent
vortices in two-dimensional turbulence resulting in dynamics inconsistent with the
original assumptions of Batchelor.

In addition, when the Batchelor range is in fact observed the quality of the
experimental data often does not allow a clear distinction between the spectral forms
(11) and (9) in the far dissipation range. Consequently experimental results usually are
interpreted assuming the earlier derived Batchelor spectrum (9) and no comparison
studies with the Kraichnan spectrum are available. The practical importance of these
spectral expressions lies in the fact that all scalar fluctuations and scalar dissipation
are effectively determined by scales from the k−1 Batchelor range. The dissipation
rates in turn determine the mixing coefficients for scalars (Dillon & Caldwell 1980)
which are critical to understand the small-scale physics of the oceans as well as the
large-scale circulation and global climate. Knowledge of spatial power spectra of
temperature fluctuations at small scales is also needed to address problems of sound
and light propagation in water (Tatarski 1961). Several scalar models have been
examined for those problems (Hill 1978) but again lack of experimental data at the
largest wavenumbers introduces uncertainties in the analyses. In view of the practical
importance of the Batchelor spectrum and the scatter in the predicted values of the
universal constant q as well as experimental controversies concerning the existence
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of the k−1 range itself, further work in this area is clearly needed. Carefully designed
numerical simulations may complement experiments and theory in contributing to
the resolution of these controversies.

While numerical simulations have been used extensively to investigate scalar spec-
tra for Pr 6 1 (Kerr 1990; Ruetsch & Maxey 1991; Pumir 1994) no similar numerical
effort has been devoted to the case of Pr > 1. The numerically discouraging aspect of
this case is that substantially higher resolution is needed to simulate the scalar field
than the velocity field. Indeed, the theoretically suggested location of the Batchelor
spectrum, k > kK , implies that the simulations should extend far into the dissipa-
tion range to values of k � kK . This effectively limits the turbulence simulations
on current supercomputers to very low values of the Reynolds number. However,
two observations suggest that it may be possible to obtain the Batchelor spectrum
in a properly designed numerical experiment despite the inability of DNS to sim-
ulate high-Reynolds-number flows. First, as already argued by Batchelor (1959) the
form of the relation (5) should also hold for low-Reynolds-number flows, as long
as Pr � 1 and there exist large velocity scales providing uniform rates of strain.
More generally, the existence of the Batchelor range for scalars with Pr � 1 can
be viewed as a consequence of the scalar diffusion in a strain field that is spatially
fairly uniform and random. This is persuasively demonstrated by the simple physical
model of Antonsen, Fan & Ott (1995) where the extensive k−1 range was obtained by
numerically solving the passive scalar equation with the velocity field prescribed as a
long monochromatic wave with a random phase. A similar approach has been em-
ployed by Holzer & Siggia (1994) for two-dimensional flows and by Pumir (1994) for
three-dimensional flows. In both cases only a few low-wavenumber velocity modes, i.e.
large scales, actively advect the passive scalar which is allowed to develop scales much
smaller than the forcing velocity field. Holzer & Siggia (1994) observed the k−1 range
for simulations performed with 5122 modes and hyperdiffusion while Pumir (1994)
estimates that in three dimensions the resolution of 10003 modes would be needed
to observe the k−1 range. Also Metais & Lesieur (1992) attribute an ‘anomalous’ k−1

passive scalar range in their large-eddy simulations to stirring of temperature by
the large energy-containing eddies. While in many of these cases the k−1 range is
observed, the prevailing rate of strain γ in (7) is generally different from the estimate
(8), expected to hold only for high-Reynolds-number turbulence. Second, as noted
above, there is evidence that the energy dissipation range (2) is independent of (or
only weakly dependent on) the Reynolds number. Therefore, the spectral dynamics
of scales from the vicinity of the Kolmogorov wavenumber kK , where the dissipa-
tion range is located, should be the same for large- and small-Reynolds-number
flows. When Kolmogorov scaling is used the increase in the Reynolds number only
extends the energy spectrum to smaller wavenumbers without affecting scales from
the vicinity of the Kolmogorov scale. Since Batchelor theory assumes that the scalar
variance dynamics is driven by the Kolmogorov velocity scales, the universality of the
energy dissipation spectra implies that the velocity field for a low-Reynolds-number
turbulent flow should have the same effect on the scalar in the Batchelor range as a
high-Reynolds-number flow. This observation suggests that it is plausible to expect
not only the same k−1 spectral behaviour, but also the same scaling, in particular for
γ, to hold for all Reynolds numbers. Note, however, that previous numerical simula-
tions performed for this problem (Holzer & Siggia 1994; Pumir 1994; Antonsen et al.
1995) deliberately did not attempt to simulate the dissipation range of the velocity
field and thus were unable to address this issue.

In view of these arguments we believe that it is worthwhile to explore the dynamics
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of passive scalars for Pr > 1 in low-Reynolds-number turbulent flows by numerically
solving the full Navier–Stokes equation for velocity and a passive scalar.

2. Basic equations and numerical methods
The flow dynamics are described by the incompressible Navier–Stokes equations

for velocity u(x, t) and the transport equation for the passive scalar θ(x, t)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ F u, (12)

∇ · u = 0, (13)

∂θ

∂t
+ (u · ∇)θ = κ∇2θ + Fθ. (14)

In the equations ρ is a constant density, p is the pressure, and ν and κ are the
kinematic viscosity and the molecular diffusivity, respectively. The terms F u and
Fθ signify forcing added to the equations in order to obtain statistically stationary
turbulence.

The flow is assumed to be contained in a cube of side L = 2π and periodic
boundary conditions in all three spatial directions are imposed on the independent
variables. The domain is discretized in physical space using N uniformly spaced grid
points in each direction resulting in a mesh size ∆x = L/N and a total of N3 grid
points. The equations of motion are transformed to spectral space using the discrete
Fourier transform

u(k) =
1

N3

∑
x

u(x) exp(−ik · x), (15)

and the inverse transform is

u(x) =
∑
k

u(k) exp(ik · x), (16)

where x are the mesh points in physical space and k are the discrete wavenumbers
with components ki = ±ni∆k, ni = 0, 1, 2, ...N/2, i = 1, 2, 3, and ∆k = 2π/L = 1. The
distinction between physical and spectral representation for a given quantity is made
through its argument x or k, respectively.

The equations are solved using a pseudo-spectral numerical method of Rogallo (1981)
in the implementation of Yeung & Pope (1988). We have employed the forcing scheme
of Sullivan, Mahalingam & Kerr (1994) in which the total energy of several low-
wavenumber modes is kept constant while evolution of individual modes through
nonlinear interactions, subject to the global constraint, is allowed. Specifically, the
sum of squared amplitudes of modes in a sphere of radius Kf = 2.5∆k is kept constant
for both the velocity and the passive scalar. This is accomplished by multiplying all
modes in the forced sphere by the same constant factor, usually not larger than 1.02,
at the end of each time step. This restores the energy (or the scalar variance) in the
sphere to the value at the beginning of the time step.

Physical quantities of interest for isotropic turbulence are described in terms of
the scalar wavenumber k = |k| by averaging over thin spherical shells defined for an
arbitrary quantity f(k) as

〈f(k)〉 =
1

Nk

∑
k

f(k), (17)
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where 〈...〉 denotes the shell average and the summation extends over all Nk modes in
the shell of thickness ∆k centred at k = |k|. The energy and the passive scalar spectra
are defined as follows

E(k) = 4πk2〈 1
2
un(k)u∗n(k)〉, (18)

Eθ(k) = 4πk2〈θ(k)θ∗(k)〉, (19)

and the corresponding dissipation spectra are

D(k) = 2νk2E(k), (20)

Dθ(k) = 2κk2Eθ(k). (21)

The integral of E(k) over k gives turbulent kinetic energy per unit mass 3/2u2 =

3/2u′2, where the overbar denotes averaging in physical space and u′ is the r.m.s.

turbulent velocity, and the integral of Eθ(k) gives the scalar variance θ2. The integrated
dissipation spectra give the dissipation rates of the kinetic energy, ε, and of the scalar,
χ. The Taylor microscale is computed as λ = (15u′2ν/ε)1/2 and the microscale Reynolds
number is Rλ = u′λ/ν. An important time scale for the evolution of turbulence is the
large-eddy turnover time Te = Lp/u

′, where Lp is the integral length scale

Lp =
π

2u′2

∫ ∞
0

k−1E(k)dk. (22)

Lp is used to define the macroscale Reynolds number Re = u′Lp/ν and the Péclet
number Pe = u′Lp/κ = Pr Re.

Values of the velocity-derivative skewness Su and the mixed-derivative skewness
Suθ are often used in direct numerical simulations to assess how well turbulence is
developed. The velocity derivative skewness Su is given by the formula

Su =
〈
(
∂u1/∂x1

)3〉
〈
(
∂u1/∂x1

)2〉3/2
. (23)

For isotropic turbulence the vorticity production rate is proportional to the velocity-
derivative skewness Su. The mixed-derivative skewness Suθ

Suθ =
〈
(
∂u1/∂x1

) (
∂θ/∂x1

)2〉
〈
(
∂u1/∂x1

)2〉1/2〈
(
∂θ/∂x1

)2〉
, (24)

is related to the nonlinear transfer of scalar variance to small scales and takes a value
zero when there is no net cascade to higher wavenumbers. For statistically steady
isotropic turbulence Su and Suθ may be expressed entirely in terms of energy and
passive scalar spectra (Kerr 1985)

Su = 2.35ν

∫
k4E(k)dk

(ε/15ν)3/2
, (25)

Suθ =
2

15
κ

∫
k4Eθ(k)dk

(ε/15ν)1/2 (χ/6κ)
. (26)
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Run Resolution ν kmax Lp λ ηK u′ ε Rλ Re −Su
x162 1623 0.02 76 1.55 ' 1.1 0.111 0.44 0.052 ' 25 34 0.60
aa162 1623 0.01 76 1.34 ' 0.8 0.0680 0.47 0.047 ' 36 62 0.46
a240 2403 0.0033 113 1.09 ' 0.4 0.0259 0.56 0.080 ' 77 185 0.51

Table 1. Parameters of the simulations for the velocity field.

3. Results
Calculations were carried out on the Cray C90 with resolution of up to 2403

modes. In addition to the turbulent velocity field in each run we carried three passive
scalars with values of the Prandtl number of 3, 5, and 7. The low-wavenumber
modes for both velocity and scalars were forced as described earlier. As an initial
condition we used the prescribed energy spectrum proportional to the exponential
E(k, 0) = C exp (−ck), where constants C and c were chosen for a given resolution to
provide a prescribed value of the microscale Reynolds number. This form of the initial
conditions is consistent with the experimental fall-off of the dissipation spectra at
larger wavenumbers (2). Since low-wavenumber modes 0 < k 6 Kf = 2.5∆k are forced
and excluded from the analysis, we did not attempt to match in the initial conditions
the algebraic prefactor in (2). Equivalently, we could have initialized simulations with
a constant energy spectrum for the forced modes k 6 Kf and vanishing spectrum
for k > Kf , but such simulations would require longer time to reach a statistically
stationary state. The initial scalar spectra were proportional to the energy spectrum.
The simulations were started with the resolution of 1283 modes and run for about one
large-eddy turnover time. Subsequently, the generated dataset was used as a restart
for a run at higher resolution 1623 which was allowed to evolve until a steady state
for the scalar field was achieved (it takes longer for the scalar spectra to achieve
equilibrium than for the energy spectra (Pumir 1994)). In this procedure at the restart
time the high-wavenumber modes, outside the initial (smaller) spectral domain, are all
zero. After the restart these modes evolve rapidly as they gain energy from the modes
in the original smaller spectral domain by the nonlinear interactions. The change in
the Reynolds number was accomplished by changing the viscosity. We found that
this approach in increasing resolution minimizes the CPU time needed to generate
a fully developed, statistically steady spectrum at the target resolution while still
generating proper results. Turbulence parameters in all runs were chosen such that all
energy and scalar spectra are well resolved in the final state. Owing to computer time
constraints the highest resolution case was run for about one large-eddy turnover
time after restarting from one of the 1623 runs. Towards the end of this run the high-
wavenumber modes, initially zero at the restart time, still experience slight energy
increase indicating imbalance between the nonlinear transfer and the dissipation in
this part of the spectrum. However, the remaining parts of the spectrum are found in
statistical equilibrium, and the velocity-derivative skewness and the mixed-derivative
skewness for this run attain generally accepted equilibrium values. These observations
imply that simulated turbulence is sufficiently well developed for the purpose of our
analysis which focuses on the k−1 behaviour at low wavenumbers. Only results from
the simulations performed with the higher resolutions of 1623 and 2403 modes are
reported here. Parameters for these runs are collected in tables 1 and 2.

Results for the spectra presented below are calculated using shell averages (17) with
the first two forced shells removed and are suitably non-dimensionalized, bringing
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Run Pr ηB χ Pe −Suθ
3 0.064 0.17 102 0.45

x162 5 0.050 0.16 170 0.42
7 0.042 0.16 238 0.45

3 0.040 0.16 186 0.38
aa162 5 0.030 0.19 310 0.40

7 0.026 0.16 434 0.38

3 0.015 0.26 555 0.41
a240 5 0.012 0.26 925 0.39

7 0.0098 0.27 1295 0.36

Table 2. Parameters of the simulations for the scalar field.
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Figure 1. Normalized energy spectra E(kηK )(kηK )5/3/(εν5)1/4 for all runs
(×, run aa162; ©, run a240; ∗, run x162).

data from all runs to a self-similar form. The classical Kolmogorov scaling procedure
for the energy spectra (Kerr 1990) uses ηK and (εν5)1/4 for non-dimensionalization
of wavenumbers and spectra, respectively. For scalar spectra the Batchelor (1959)
scaling is usually employed where ηB and χ(ν/ε)1/2ηB are used to non-dimensionalize
wavenumber k and the spectra, respectively.

3.1. The velocity spectra

Figure 1 presents a log-log plot of three-dimensional energy spectra using the Kol-
mogorov scaling and multiplied by (kηK)5/3. For wavenumbers kηK < 0.2 the plotted
functions appear flat which suggests a 5/3 slope for the energy spectra characteristic
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Figure 2. Normalized energy spectra E(kηK )(kηK )5/3/(εν5)1/4 in the range of low wavenumbers.
The horizontal lines in the plot mark the range of values of the Kolmogorov constant (symbols as
figure 1).

of the inertial range. This range of small wavenumbers is enlarged in figure 2 where
the vertical axis is plotted using a linear scale. The approximate inertial range is
clearly present in run a240 where the Kolmogorov constant CK is between 1.2 and 1.6
for kηK < 0.2. This value is consistent with the values observed experimentally but
smaller than reported in numerical simulations where values around 2.0 are frequently
found. No inertial-range behaviour is found for runs at lower Reynolds numbers. It
is also clear that the Kolmogorov scaling succeeds in bringing spectra at different
Reynolds numbers into a self-similar form. The values of the velocity-derivative
skewness Su for all runs are given in table 1 and are consistent with the generally
accepted value of −0.5 (Kerr 1985) for well-developed turbulence. Figure 3 presents
the same quantity as in the previous figures but plotted on the log-linear scale which
emphasizes the far dissipation range. In the far dissipation range the energy spectrum
is believed to be a simple exponential, i.e E(k) ∼ B exp(−aηKk). Our data give value
of B = 8.5 and a = 5.4 consistent with values of B = 8.4 ± 0.6 and a = 5.1 ± 0.1 of
Kida & Murakami (1987). This fit is particularly good for the coefficient B due to
large resolution of our runs and relatively poorer for the slope a because of the early
termination of the a240 run.

In figure 4 we plot the normalized kinetic energy dissipation spectra. In all cases
the dissipation is concentrated at kηK around (1–2)×10−1. For the highest resolution
case we observe the well-defined dissipation peak but for the two cases at the lower
resolution the maximum of the dissipation spectrum occurs at the smallest unforced
wavenumbers. A complete overlap between the energy-containing and the dissipation
ranges is consistent with the lack of the inertial subrange in the latter cases.
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numbers (symbols as figure 1).

3.2. The scalar variance spectra

In the previous subsection we showed that the energy spectra are self-similar and
are consistent with other numerical and experimental results. This suggests that the
numerically simulated velocity fields can be used to reliably advect passive scalars
in order to study their dynamics. This suggestion is supported by the observed
values of the mixed-derivative skewness Suθ in the simulations. One of the secondary
predictions of Gibson’s (1968b) theory is that the mixed-derivative skewness is a
constant independent of the Reynolds and Prandtl numbers. Numerical simulations
of Kerr (1985, 1990) agree with this prediction giving Suθ ' −0.5. The mixed-
derivative skewness is found to be around −0.4 in the experiments of Clay (1973).
In our simulations Suθ is close to −0.4 for all analysed runs (see table 2). This also
implies that the interactions between the velocity and scalar are well developed in the
final states analysed in this paper.

The controversial evidence for the existence of the Batchelor spectrum comes mostly
from a few laboratory and oceanographic measurements and numerical solutions of
simplified model problems (Caldwell et al. 1980; Oakey 1982; Gibson & Schwarz
1963; Holzer & Siggia 1994; Pumir 1994; Antonsen et al. 1995). To our knowledge
there are no existing numerical simulations of full Navier–Stokes equations for passive
scalar fields with Pr > 1 which exhibit the Batchelor-range behaviour.

In figure 5 we plot the scalar spectra multiplied by kηB using the Batchelor scaling
for all three runs and all three Prandtl numbers Pr = 3, 5, 7. All curves collapse tightly
to one universal form which shows that the Batchelor scaling is indeed universal for
Pr > 1 in the dissipation and the far dissipation range.

Because of the multiplication by kηB the flat part of the curves in the range of small
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Figure 6. Normalized scalar dissipation spectra Eθ(kηB)(kηB)2/(χ(ν/ε)1/2ηB) for all runs and all
Prandtl numbers (symbols as figure 1).

wavenumbers 0.02 < kηB < 0.2 corresponds to the Batchelor-range k−1 behaviour
which is observed in our simulations even for scalar with the Prandtl number as low
as 3.

In figure 6 we plot the normalized dissipation spectra Eθ(kηB)(kηB)2/(χ(ν/ε)1/2ηB)
for all cases. The Batchelor scaling clearly collapses the dissipation spectra for all
Reynolds numbers and Prandtl numbers and the location of the dissipation peak
around kηB = 0.25 is consistent with oceanic data of Oakey (1982).

3.3. Parameters of the scalar spectra in the dissipation range

In the spectral forms proposed by Batchelor (9) and by Kraichnan (11) the constant
q is unknown while all other parameters are either prescribed (ν and κ) or can be
computed from the data (ε and χ). Values of the universal constant q are obtained
from the least-square fit of formulas (9) and (11) to the numerical data for run
a240 giving qB = 3.9 ± 0.25 and qKr = 5.26 ± 0.25, respectively. In figure 7 we
present the results of the fit compared with the numerical data. Kraichnan’s spectral
form describes our data extremely well, with an exception in the exponential tail
corresponding to the scalar with Pr = 7. This can be attributed to the previously
discussed fact that in this case the scalar field still evolves in the range of the largest
wavenumbers. In the case of the Batchelor form the best-fit curve (figure 7) shows
large systematic deviation from our numerical data. The systematic deviations of the
Batchelor prediction from experimental data measured in situ has long been noted
in oceanographic literature. Oakey (1982) observed that in the k−1 portion of the
spectrum the best fit to the Batchelor spectrum systematically under predicts the
experimental data. We observe similar behaviour in our simulations (see figure 7),
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Figure 7. Normalized scalar dissipation spectra Eθ(kηB)(kηB)2/(χ(ν/ε)1/2ηB) for run a240 and the
best least-squares fit provided the Kraichnan and Batchelor spectral forms.

with the numerical data located above the Batchelor curve for wavenumbers before
the dissipation peak. Our estimate of qB = 3.9 is in good agreement with the value
q = 3.7± 1.5 obtained by Oakey (1982) from oceanic measurements.

Two different forms of passive scalar spectra (9) and (11) imply different error
estimates for spectrally under-resolved experimental measurements of the scalar dis-
sipation rate χ. The experimentally resolved wavenumbers usually do not extend
beyond kηB ≈ 1. The scalar dissipation rate associated with wavenumbers greater
than kηB ≈ 1 is 2% and 6% of the total dissipation rate for the Batchelor and
Kraichnan forms, respectively. Thus the use of the Batchelor form would imply that
error due to a limited extend of the spectra is on the order of only 2%. However, the
much better fit of the Kraichnan form to the data implies that the wavenumbers in
the range kηB > 1 actually contribute about 6% to the total dissipation rate, and the
measured χ should be corrected by this amount. Nevertheless, with the wavenumber
resolution up to kηB ≈ 1 both spectral forms will result in values of χ within few
percent of each other.

Sometimes in oceanographic experiments the kinetic energy dissipation rate ε is
also determined indirectly from the measured temperature variance spectra. This is
accomplished by assuming that the temperature spectra are properly described by
the Batchelor formula (9) with the assumed value of the universal constant q. The
temperature variance dissipation rate χ is computed directly from the measurements
and ε is treated as a parameter whose value is specified by requiring the best
least-squares fit of (9) to the measured data. We have attempted to estimate the
sensitivity/error in such a procedure associated with using either the Batchelor or the
Kraichnan model. Several subsets of our data set (run a240) were selected such that
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the majority of the points belonged to either the pre-peak, peak or far dissipation
range. In all sets the dissipation peak was resolved. Using earlier established optimum
values of the constant q, qKr , and qB , this procedure yielded the relative error in
estimated values of ηB up to 6% when using the Batchelor form and an order of
magnitude less in the Kraichnan form. Since ε ∝ η4

B , fitting the Batchelor form
to experimental data can account for at least 25% of the error in ε estimates. In
the presence of systematic measurement noise the error is expected to be larger.
Because of the much smaller error implied by the Kraichnan formula its use should
be attempted in estimating the kinetic energy dissipation rates from the temperature
variance measurements in oceanic environment.

Finally, in this context it may be noted that Gibson (1991) argues that the errors in
estimating the dissipation rates from local measurements may be significantly larger
if intermittence of turbulence is not properly taken into account.

3.4. One-dimensional scalar spectra

The quantity usually measured in experiments is the one-dimensional scalar
spectrum E1θ which is related to its three-dimensional counterpart Eθ by the
formula

Eθ(k) = −k ∂E1θ(k)

∂k
, (27)

and normalized as

θ2 =

∫ ∞
0

E1θ(k
′)dk′ =

∫ ∞
0

Eθ(k)dk, (28)

We can obtain the one-dimensional scalar spectrum derived both from the
Batchelor and from the Kraichnan three-dimensional spectral forms (9) and (11),
respectively:

E1θ(k)

χ(ν/ε)1/2ηB
= q(kηB)−1 exp(−q(ηBk)

2) + π1/2q3/2(erf(q1/2(ηBk))− 1), (29)

E1θ(k)

χ(ν/ε)1/2ηB
= q(kηB)−1 exp(−(6q)1/2ηBk). (30)

In figure 8 we compare our calculated one-dimensional scalar spectra with the
above formulas. The Batchelor k−1 range corresponds to the flat part of the curves.
Here, as for the previous three-dimensional spectra, Batchelor’s prediction agrees
fairly well with the simulated data for small k but it diverges for larger wavenumbers
(kηB > 1), while Kraichnan’s model describes the spectrum very well in the entire
range of simulated wavenumbers.

3.5. Location and universality of the k−1 range

The remarkable fact is that Batchelor scaling, originally associated with the properties
of high-Reynolds-number turbulence, works so well in our low-Reynolds-number
simulations. Batchelor scaling uses the rate of strain of the Kolmogorov eddies
(ε/ν)1/2 but one may argue that in our forced simulations the rate of strain of the
energy-containing eddies u′/Lp is more appropriate. However, scaling based on u′/Lp
did not bring the data to a self-similar form. The success of the Batchelor scaling
supports the arguments put forward in the Introduction where we propose that the
Batchelor-range spectrum may be independent of Reynolds number because of the
universality of the velocity dissipation-range spectrum. It also indirectly supports
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Figure 8. Normalized one-dimensional scalar spectra E1θ(kηB)(kηB)/(χ(ν/ε)1/2ηB) for all runs and
all Prandtl numbers. For comparison the Kraichnan formula (30) and the frequently used Batchelor
expression (29) are plotted.

Gibson’s (1968b) theory which predicts that the Batchelor scaling should apply to the
scalar far dissipation range for arbitrary values of Pr, not necessarily for Pr � 1
as first proposed by Batchelor (1959). The location of the simulated k−1 range for
kηB 6 0.2, equivalent to roughly kηK 6 1, appears to be at variance with the
Batchelor theory which predicts the k−1 range for wavenumbers kηK � 1. However,
the inconsistency is removed if one notes that the velocity scales responsible for the
Batchelor-range behaviour should be those that provide the largest rates of strain.
Since the spectral estimate of the rate of strain is (E(k)k2)1/2, generally the dominant
scales are located in the vicinity of the maximum dissipation wavenumber kηK ≈ 0.2
rather than around the Kolmogorov wavenumber kηK ≈ 1. Moreover, the extent and
the location of the Batchelor range is consistent with the following Obukhov type
argument (Corrsin 1964). The scalar variance flux F(k) at wavenumber k is estimated
as

F(k) = kEθ(k)/τ(k), (31)

where τ(k) is the turnover time for scales k. In Batchelor’s theory the scalar flux
and the turnover time are independent of k, F(k) = χ and τ ' (ν/ε)1/2, respectively,
resulting in

Eθ(k) ∼ χ(ν/ε)1/2k−1. (32)

In general the scalar flux is expected to be approximately constant in the range of
wavenumbers with negligible scalar variance dissipation. As one progresses towards
larger wavenumbers the scalar variance flux is steadily decreased by the dissipation,
with the largest effect around the scalar dissipation peak. According to figure 6
the dissipation peak is located somewhere in the range (0.2 − 0.3)kηB . Therefore,
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the previous arguments suggest that the Batchelor range should be observed for
k < 0.2kηB , which is indeed the case. In general the experimental results are consistent
with the onset of the Batchelor range at around kηK ' 0.05 for Prandtl numbers
ranging from Pr ' 1 to Pr = 100 (Hill 1978). In our data the beginning of the k−1

range can be observed in figure 9 where the scalar spectra multiplied by k are plotted
after normalizing wavenumbers with the Kolmogorov length ηK rather than with the
Batchelor length ηB . With this normalization we obtain a family of self-similar curves,
one for each different value of the Prandtl number. The extent of the k−1 range
increases with the increasing value of Pr but all curves converge to a common origin
at kηK ≈ 0.05.

4. Conclusions
We have examined energy and passive scalar spectra obtained in high-resolution

direct numerical simulations at three different Reynolds numbers and for three Prandtl
numbers Pr = 3, 5, and 7.

At the highest Reynolds number Rλ = 77 the energy spectrum has a short in-
ertial range and the Kolmogorov constant is consistent with experimental data.
The lower-Reynolds-number cases do not exhibit the inertial-range behaviour. The
maximum in the dissipation spectrum is found between 0.1kηK and 0.2kηK . In all
cases the spectra in the far dissipation range for kηK > 0.2, i.e. beyond the dissi-
pation peak, have a universal exponential form independent of Reynolds number
and with parameters in good agreement with other numerical investigations. The
universality implies that those features of turbulence that are determined by scales
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from the vicinity of the dissipation peak and beyond can be investigated through
direct numerical simulations irrespective of the value of the Reynolds number. In
particular, since the Batchelor spectrum for passive scalars with Pr > 1 is assumed
to be controlled by the velocity scales from the vicinity of kηK ≈ 1, this suggests
that passive scalars with Pr > 1 advected by such turbulent velocity fields should
exhibit universal behaviour consistent with the predictions of Batchelor (1959) and
Gibson (1968b).

This conclusion is confirmed by the simulated passive scalar spectra. In all cases we
observe the appearance of the Batchelor k−1 range followed by the exponential decay
in wavenumber k and the spectra are self-similar under the Batchelor scaling. However,
we find the Batchelor-range behaviour for wavenumbers kηK 6 1, at variance with
the Batchelor theory which predicts the k−1 range for wavenumbers kηK � 1. Our
results suggest that the velocity scales responsible for the Batchelor-range behaviour
reside in the vicinity of the maximum dissipation wavenumber kηK ≈ 0.2 rather than
around the Kolmogorov wavenumber kηK ≈ 1.

Comparisons with the Batchelor and Kraichnan functional forms of the scalar
spectra show that data from our simulations follow closely the Kraichnan form
while displaying systematic deviations from the Batchelor form. In the context of
oceanographic procedures which estimate the kinetic energy dissipation rates ε from
the temperature measurements the implication is that the Kraichnan formula will
provide more accurate estimates than the Batchelor formula.

Our numerical results contribute to the ongoing discussion concerning the form
and universality of passive scalar spectra in turbulent flows for Pr > 1. It may be
useful to summarize briefly several main differences between our assumptions and
experimental conditions and those of other studies since they may responsible for the
different conclusion reached. The values of the Prandtl number in the simulations (3,
5, and 7) are greater than unity but much less than those of some experiments (Miller
& Dimotakis 1995; Williams et al. 1997). Similarly, the values of Reynolds numbers
in the simulations are much smaller than in many experiments but comparable to
others (Gargett 1985). The simulations are very well resolved in the range of small
scales, much better than typical experiments or field measurements (Oakey 1982),
allowing the clear distinction between the Gaussian and exponential fall-off at large
k. Contrary to other numerical simulations (Pumir 1994) which restrict the velocity
field responsible for advecting the scalar to only a few active modes, we use the
full velocity field obtained from the Navier–Stokes equations. This may enable us
to observe the k−1 range at smaller resolutions than suggested by other numerical
models.

Finally, we believe that analyses of the velocity and scalar fields using physical
space representations are helpful in determining the precise physical mechanisms
responsible for the Batchelor-range behaviour and we propose that such analysis be
performed in the future.
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